• 登入
  • 註冊



  • 購物車(0)
  1. 二手書搜尋
     

    書籍分類
    1. 回到書城首頁
    2. 【本日66折】
    3. 【最新上架】
    4. 【逛書房】
    5. 【人文 史地】
    6. 【文學 小說】
    7. 【自然 科學】
    8. 【休閒 嗜好】
    9. 【保健 美容】
    10. 【進修 語言】
    11. 【大學用書】
    12. 【財經 企管】
    13. 【心理 人際關係】
    14. 【家庭 親子】
    15. 【藝術 設計】
    16. 【傳記 珍本】
    17. 【漫畫 電玩】
    18. 【宗教 命理】
    19. 【電腦 網路】
    20. 【參考書 工具書】
    21. 【雜誌期刊】
  2. 買二手書 > 書寶官方書城  >【大學用書】 > 資訊

    【JL4】成為大數據電子商務人才的第一本書_鄭江宇


    作者: 鄭江宇
    出版社: 五南
    ISBN: 9789571196107
    付款方式: 7-11付款取貨、Web ATM、信用卡一次付清
    配送方式運費:
    • i郵箱純取貨  
      - 1~10本運費 $60 $40
      - 11本以上請分筆下單
    • 全家付款取貨
      -運費 $40
    • 7-11付款取貨
      -運費 $60
    • 宅配/貨運/郵寄
      -運費 $120
    • 外島
      -運費 $120
    原價: 329
    售價: 79
    商品數量:0
    商品編號: O_U102051341

    書況補充說明:B自然泛黃書斑、髒污。
     已售完

    加到找書小幫手

    限時特價,要買要快

    LINE分享
    FB分享




    其他二手書推薦
    【KOX】Management information systems : managing the digital firm_Ken
    作者:KennethC.Laudon,JaneP.Laudon
    售價:749
    【PEK】藍芽科技:打造現代生活新革命_莊奕琪
    作者:莊奕琪
    售價:239
    【DQL】經濟學:理論與實際_陳正倉, 林惠玲, 林建甫, 林世昌
    作者:陳正倉,林惠玲,林建甫,林世昌
    售價:379
    【EB5】Blockchain: Blueprint for a New Economy_Swan, Melanie
    作者:Swan,Melanie
    售價:749
    【EKY】Industry 4.0: The Industrial Internet of Things_Gilchrist, Ala
    作者:Gilchrist,Alasdair
    售價:1169
    【EK3】Understanding Silicon Valley: The Anatomy of an Entrepreneuria
    作者:Kenney,Martin(EDT)
    售價:959
    【IJ6】拚經濟:一本國民指南_張夏準,  潘勛, 楊明暐
    作者:張夏準,潘勛,楊明暐
    售價:199
    【E13】Essential calculus : early transcendental functions_Ron Larson
    作者:RonLarson,BruceH.Edwards
    售價:699
    【I96】Understanding Hypermedia 2.0: Multimedia Origins, Internet Fut
    作者:BobCotton,RichardOliver
    售價:769
    【I9V】最新網路概論14/e_施威銘研究室
    作者:施威銘研究室
    售價:269


    • 商品資訊
    • 心得分享

    文字大小:

    以下書況,主觀上皆可閱讀,若收到後不滿意,『都可退書退款』。

    書況補充說明: B自然泛黃書斑、髒污。


    【購買須知】

    (1)照片皆為現貨實際拍攝,請參書況說明。

    (2)『賣場標題、內容簡介』為出版社原本資料,若有疑問請留言,但人力有限,恕不提供大量詢問。

    (3)『附件或贈品』,不論標題或內容簡介是否有標示,請都以『沒有附件,沒有贈品』為參考。

    (4)訂單完成即『無法加購、修改、合併』,請確認品項、優惠後,再下訂結帳。如有疑問請留言告知。

    (5)二手書皆為獨立商品,下訂即刪除該品項,故『取消』後無法重新訂購,須等系統安排『2個月後』重新上架。

    (6)收到書籍後,若不滿意,或有缺漏,『都可退書退款』。



    [商品主貨號] U102051341

    [ISBN-13碼] 9789571196107

    [ISBN] 957119610X

    [作者] 鄭江宇

    [出版社] 五南

    [出版日期] 2018-04-28

    [內容簡介] (出版商制式文字, 不論標題或內容簡介是否有標示, 請都以『沒有附件、沒有贈品』為參考。)

    任何人都不該錯過的一本書!大數據浪潮來襲,在巨量、繁雜的資料之中掏選出黃金資訊,已經成為現今最兵家必爭之顯學,大數據的應用幾乎是全方位,技術和工具也不斷推陳出新,現今管理與行銷方法跟思維勢必也要經歷一番徹底的更新,沒錯!如何有效應用大數據是傳統電子商務業者的重要課題,也將成為未來電子商務趨勢所在。誰能夠迅速地掌握關鍵,誰就可以成為未來電子商務的掌舵手!

    本書為東吳大學巨量資料管理學院許晉雄副院長與鄭江宇教授聯合著作,蘊含其涵養多年的專業知識與豐富的教學經驗編寫而成,也是國內第一本由大數據專業教學領域學者書寫的大數據應用與實務工具書,不論是理論或是實務操演,內容上都十分的詳實而完備,用字遣詞上也非常平易近人,即使沒有資訊背景、不會寫程式也能一讀就懂。本書非常適合當作大數據的第一本入門書,然其內涵與獨樹一格的分析也能對相關領域的人帶來一定的影響力。

    高人下凡來指點,不想落後跟緊點!

    認識大數據!告訴你大數據如何影響我們日常生活?大數據如何成就電子商務4.0?

    運用免費工具蒐集巨量資訊!一步步教你如何使用網路爬蟲Python Crawler、Power BI、IBM Watson使用實際操演畫面的步驟化教學,跟著老師做,一定能學會!

    活用免費網路資源分析巨量資訊!使用Google Analytics與SimilarWeb兩大利器,全方位掌握使用者的網路足跡就能化為商機!

    如何從日常生活中觀察大數據電子商務機會與前景?生活化的舉例讓你輕鬆觸類旁通,成為下一個大數據電子商務人才不是夢!
    鄭江宇

    現任

    東吳大學巨量資料管理學院專任助理教授

    台北科技大學工業工程與管理系兼任助理教授

    台灣金融研訓院遴選菁英講座著作

    《指尖下的大數據:運用Google Analytics發掘行動裝置裡的無限商機》

    《流量分析與考題大揭秘:Google Analytics》

    許晉雄

    現任

    東吳大學巨量資料管理學院副院長兼學位學程主任

    東吳大學財務工程與精算數學系教授經歷

    東吳大學商用數學系副教授

    東吳大學商學院商學進修學士班主任

    台灣科技大學工業管理系兼任副教授

    實踐大學企業管理系兼任副教授

    工研院講師

    成功大學管理顧問班講師

    東吳大學發展處處長

    東吳大學社會資源處處長
    推薦序

    序Part 1 大數據與電子商務

    Chapter1 大數據崛起與電子商務變革

    1-1 何謂大數據

    1-2 大數據對傳統電子商務之影響

    1-3 大數據成就新電商4.0

    1-4 大數據電商營運模式

    Chapter2 大數據電商技能與挑戰

    2-1 微觀視角

    2-2 鉅觀視角

    Chapter3 大數據電商機會與前景Part 2 大數據電子商務之輿情探索

    Chapter4 站外情報探索

    4-1 谷歌搜尋趨勢Google Trends

    4-2 谷歌消費者氣壓計Google Consumer Barometer

    4-3 網路爬蟲Python Crawler

    Chapter5 站內情報探索

    5-1 購物籃分析運作

    5-2 購物籃分析之R語言實作

    Chapter6 社群情報探索

    6-1 Power BI安裝與設定

    6-2 臉書資料探索 (具管理權限)

    6-3 臉書資料探索 (不具管理權限)

    6-4 IBM Watson 社交情報探索Part 3 大數據電子商務之數位足跡掌握

    Chapter7 深度流量分析 (Google Analytics)

    7-1 傳統網站HTML程式碼安裝

    7-2 套版式網站安裝

    Chapter8 廣度流量分析 (SimilarWeb)

    8-1 SimilarWeb (自我網站絕對分析)

    8-2 SimilarWeb (他人網站相對分析)

    Chapter9 行動流量分析 (iBuildApp)

    9-1 行動流量分析理論依據

    9-2 網站型APP製作

    9-3 iBuildApp之GA嵌入Part 4 大數據電子商務之資訊濃縮與獲取

    Chapter10 主動式掃碼互動

    10-1 一維條碼

    10-2 二維條碼

    10-3 個性化QR-Code製作

    10-4 掃碼行為分析

    Chapter11 主動式擴增實境

    Chapter12 非主動式超聲波互動Part 5 大數據電子商務之善用情報資料視覺化與人工智慧

    Chapter13 跨境電商情報探查利器

    Chapter14 大數據資料視覺化呈現

    14-1 程式碼嵌入式

    14-2 GUI介面式

    Chapter15 智慧語音客服訂單不漏接結語
    1-1何謂大數據

    大數據 (Big Data) 一詞最早出現在 2012 年 Viktor Mayer-Schönberger&Kenneth Cukier 兩位的著作《大數據時代:生活、工作與思維的大變革》當中,書裡提到所謂大數據指的是 4V 數據特性,包含數量龐大 (volume)、產生速度快 (velocity)、形式多樣 (variety) 且具有價值 (value) 的資料。茲將此四大特性說明如下:

    數量龐大 (volume)

    Volume 原意為一個有形物體或容器內的空間容量,例如:某一輛汽車的油箱容量為 60 公升,若能夠將油箱擴大,那麼就可以存放更多的汽油來延長汽車續航力。在大數據世界裡,volume 卻屬於一個抽象概念,好比一個沒有刻度的量杯一樣,並無具體資料容量上限。試想,在這個世界上有幾個網站呢?而在這龐大網站量中流竄的全球網路流量又有多少呢?答案想必是非常驚人!在大數據裡,volume 其實就是指數量龐大的網路資料。

    以傳統電子商務時代而言,或許網路資料僅局限於來自網站的流量,然而近年來受惠於行動網路普及,由行動裝置所產生的網路流量不約而同的加入貢獻 volume 的行列,甚至是近年流行的物聯網也不例外,在萬物皆可連網情況下,儼然扮演額外的網路流量供應者,因此我們也可以把大數據的數量龐大(volume) 特性視為「浩瀚網路容器中的無垠數據」。再舉一個生活中常見的龐大數量 (volume) 案例,大家平常在使用手機上網的時候可能會遇到一種情況,那就是上網流量超過電信業者合約中的限額。以 1G 流量限額來說,若將流量使用完畢,等同於自己在智慧型手機上閱讀了上千本電子書的內容,然而實際上的流量限額不只有 1G,甚至有不少人是使用吃到飽方案,那麼在沒有限制的情境下比喻成電子書閱讀數量恐怕更難以計算。產生速度快 (velocity)

    大數據的產生可以說是一年三百六十五天、一天二十四小時不斷的發生著。若以資料在網上流動的速度而言,不妨試著想想看在簡單的 LINE 對話過程裡 (傳訊方是上傳、收訊方是下載),自己一天當中發生過幾次一來一往的傳送與接收訊息呢?如果將此單一個人每天傳訊的流動頻率放眼至全世界的LINE 用戶的話,LINE 公司的伺服器主機一天當中又得服務多少用戶傳送與接收訊息需求呢?然而這只是眾多大數據資料流動的一個小案例,在人們日常生活中,只要所從事的活動涉及到網路,就等同於隨時產生資料流動,也就是達到資料即時性 (real-time)。

    以傳統電子商務來說,在過去受限於硬體處理能力或是資料分析技術上的瓶頸,往往只能透過顧客關係管理系統 (Customer Relationship Management,CRM) 來將消費者的交易紀錄進行歷史性事後分析。例如:業者可以透過RFM 分析來匯總顧客最近一次交易日期 (recency)、交易頻率 (frequency) 以及交易金額 (monetary),然而這一切以大數據電子商務的觀點來看,恐怕是太後知後覺了。換句話說,當消費者每分每秒不斷的進行資料傳送與接收時,相關業者有必要以「即時」或是「趨近即時」的作為來回應消費者需求,例如:依據消費者過去交易紀錄以及當下的網站訪問行為,電子商務業者可以針對特定顧客投放即時性的專屬優惠資訊。形式多樣 (variety)

    在日常生活中常見的資料多數屬於數字形態的結構化資料,例如:溫濕度、學期總平均、股票交割金額等。然而大數據並非僅局限在數字形態資料,它還包括許多非結構化的資料,例如:聲音、視覺焦點、臉部表情等。在傳統電子商務情境中,結構化資料一樣是較為常見的資料,像是顧客交易額、訪客網站瀏覽次數、網站跳出率等。時至今日,受惠於許多資料截取技術突飛猛進,使得新形態電子商務得以將過去無法捕捉的資料進行「非結構化→結構化」的轉換處理。舉例來說,若某電子商務網站想要得知其訪客的目光焦點(即訪客進站後的網站內容瀏覽重點),可以在徵求顧客同意的前提下,請他們在自己電腦上安裝眼動拍攝儀,藉此將目光焦點這樣的非結構化資料轉換為結構化資料,如此,電子商務網站業者便能得知訪客是如何被自己網站的內容吸引 (如圖 1-2)。類似方式也被使用在新型態的零售業上,知名連鎖超商業者 7-11 於日前在各店結帳櫃台後方掛上液晶螢幕 (如圖 1-3),在播放商品廣告之餘,同時也利用螢幕上視訊鏡頭記錄顧客觀看時的眼球活動,此舉不但能夠有效的化解顧客排隊結帳時的不耐煩,也巧妙的捕捉到非結構化數據,從而能夠針對眼球停留秒數與臉部表情辨識結果來提供精準的商品推薦。價值 (value)

    資料必須經過轉化才能成為具有價值的數據。這個道理就好比平常政府所宣導的資源回收一般,把看似無用的垃圾加以分類處理,就可以回收再利用、垃圾也能變黃金。對傳統電子商務業者而言,僅僅是針對單一數據來蒐集與分析較難察覺到其中的數據價值。例如:某電子商務網站記錄了「訪客進站次數」,然而此單一數據充其量只能描述一個網站所獲得的訪客數多寡,無法再進一步針對此數據給予延伸性的詮釋。此時若加入其他數據一同探討,那麼數據價值即可逐漸明朗。例如:除了「訪客進站次數」這個單一數據之外,該業者額外記錄了「訪客進站日期」,若將此兩項數據合併探討,也就是「訪客進站次數」+「訪客進站時段」,則可以交織出圖 1-4 矩陣,如此便能針對四個象限給予更深度的詮釋,因此資料轉化力 (data derivability) 對於數據價值之影響不可小覷。很遺憾的,受到大數據資料特性的影響〔即數量龐大 (volume)、產生速度快 (velocity)、形式多樣 (variety)〕,資料轉化力之培養更是極具挑戰。換句話說,如何能夠在形式多樣且產生速度快的龐大數據中,轉化出有價值的數據將會是一項艱難的挑戰。下圖 1-5 為 Miller & Mork1 兩位學者於 2013 年所提出的資料價值鏈 (Data Value Chain, DVC),共計有三大階段,每一階段附帶著該

    環節應有的資料作為,敘述如下:

    (1) 資料探索階段 (data discovery)

    由於大數據的來源非常多,甚至不同的資料來源所呈現的資料型態也不盡相同,資料價值鏈中的首要階段就是針對不同資料來源,建立適合它們存放的場所,同時也要針對多種資料來源存放場所給予詮釋說明。這就好像一個大倉

    庫中有許多小倉庫的概念,每一個小倉庫存放不同器具、原料或工具,也許是固態原料,又或許是液態原料,它們各自有合適的存放方式,為了能夠順利的在大倉庫快速找到所需使用的原料,那麼在每一個小倉庫上標記內容物敘述,就顯得非常必要。除此之外,由於小倉庫內容物的型態各有不同,因此管理者必須針對這些不同內容物制定領用規則,如此才能確保整體大倉庫的運作,而這些作為正是為了順利產出資料價值所必須的資料探索階段。

    (2) 資料整合階段 (data integration)

    資料整合階段的任務就是將第一階段的各式資料來源探索結果予以整合,形成一個類似大腦中樞概念,以便將不同資料在相同形式下順利呈現。舉例來說,若要讓管理員能夠有效率的管理在大倉庫中的每一個小倉庫,提供他們統

    一且具有綜觀效果的管理介面,將有其必要性。然而這個管理介面除了要能夠對外呈現一致性的資料表達之外,還要能夠隨著小倉庫的內容物改變而將最即時、最精準數據提示給管理員。(3) 資料利用階段 (data exploitation)

    經過上兩個階段的努力之後,資料利用階段的任務就是要把所獲得的資料予以正確的分析,並且將分析結果提供給資料需求者。例如:大倉庫管理員除了擁有上一階段所提到的良好管理介面之外,若能夠將各個小倉庫內容物的變化情況予以彙整並且進行資料的預測分析與視覺化,那麼倉庫管理員便能夠從分析結果中判斷未來可能的小倉庫內容物異動,甚至可以將這些數據結論提供給高階主管供其決策制定參考,此時倉庫管理員受惠於資料妥善利用,便可著實扮演決策者與資料之間的友善之橋,從而讓數據價值逐漸浮現。綜合以上說明得知,大數據可以說是包山包海,幾乎任何形式的數據皆可視為一種大數據。既然大數據的範疇如此廣泛,傳統電子商務業者自然不會放過任何可以應用大數據的機會。套一句阿里巴巴總裁馬雲說過的一句話:「做

    淘寶不是賣貨,而是為了獲得數據。」從這席話,我們就可以推敲出數據對於電子商務之重要性,就好比魚要生存不能離開大海一般,這也是為什麼有些電子商務業者可以善用數據、從數據裡淘金,但有些業者卻無法從中洞察出數據價值與機會。有鑑於此,下一節我們將更具體介紹大數據能夠在電子商務上帶來哪些前所未有的新應用,以及這些新興應用對於傳統電子商務之影響為何。)

    -----------------------------------------------------------

    分享閱讀 書籍狀態請詳看圖示



    ■客服電話服務時間:

     

    敝店客服電話 (02) 85316044

    服務時間為 週一至週五 09:00-12:00 及 13:00-17:00 例假與國定假日公休

    其餘時間請使用線上留言留下您的訂單資料與疑問 。

    由於敝店為多平臺同步販售,來電請務必告知為書寶官方書城買家以節省您的寶貴時間,謝謝您。



  3.  

書寶二手書店 版權所有 © 2016 SPBOOK All Right Reserved

忘記密碼

請稍候